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Introduction. On 7 March 2015, Peter Renz relayed to me a problem posed by
his friend, Sherman Stein, a mathematician retired from the UC/Davis faculty.
Let

F (x) = 1
e · (1 + x)1/x

Stein asks for the expansion of F (x) about x = 0. Mathematica supplies

F (x) = 1 − 1
2x + 11

24x2 − 7
16x3 + 2447

5760x4 − 959
2304x5 + 238043

580608x6 − 67223
165888x7 + · · ·

where the leading term provides a statement of the familiar result

lim
z→∞

(
1 + 1

z

)z = e

Writing

F (x) = a0 − a1x + a2x
2 − a3x

3 + · · · =
∞∑

n=0

an(−x)n

Stein asks for constructions of the coefficients an. I brought Stein’s problem to
the attention of Ray Mayer, from whom I now quote.

Mayer’s solution. Write

F (x) = ef(x) where f(x) = log F (x)
= 1

x log(1 + x) − 1

= − 1
2x + 1

3x2 − 1
4x3 + 1

5x4 − 1
6x5 + · · ·

≡
∞∑

n=0

cn(−x)n

with c0 = 0, cn = 1
n+1 (n = 1, 2, 3, . . .). Application of x d

dx to F = ef gives

xF ′ = F · xf ′

or
∞∑

n=0

(−)nannxn =
∞∑

j=0

(−)jajx
j ·

∞∑

k=0

(−)kckkxk =
∞∑

j,k=0

(−)j+kajckkxj+k

=
∞∑

n=0

(−)n
n−1∑

j=0

(n − j)ajcn−jx
n

where the reduced upper limit on the second summation arises from c0 = 0.
Equating the coefficients of xn on left and right gives the recursion relation
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an = 1
n

n−1∑

j=0

(n − j)cn−jaj

= 1
n

n−1∑

j=0

n−j
n−j+1aj (1)

= 1
n

{
n

n+1a0 + n−1
n a1 + n−2

n−1a2 + · · · + 2
3an−2 + 1

2an−1

}

Mayer’s construction (1) agrees precisely with the recursion relation
that was promptly obtained (almost certainly by the same argument) by Don
Chakerian (Stein’s colleague, also retired from the mathematics faculty at
UC/Davis).

Some ramifications. In (1) an is seen to depend linearly on a0, a1, . . . , an−1,
which places at our disposal the resources of linear algebra. Let
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and

aaa0 =





1
∗
∗
∗
...





Then

Aaaa0 =





1
a1

∗
∗
...




≡ aaa1, Aaaa1 = A2aaa0 =





1
a1

a2

∗
∗
...




≡ aaa2, . . . , Anaaa0 =





1
a1

a2
...

an

∗
∗
...





≡ aaan
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where the values of the ∗-terms are irrelevant. To see more clearly how this
comes about, we look to the case A5 where (according to Mathematica) we
have

A5 =





1 0 0 0 0 0 0 0 · · ·
1
2 0 0 0 0 0 0 0 · · ·
11
24 0 0 0 0 0 0 0 · · ·
7
16 0 0 0 0 0 0 0 · · ·

2447
5760 0 0 0 0 0 0 0 · · ·
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2304 0 0 0 0 0 0 0 · · ·
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1
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and notice that the coefficients {a0, a1, a2, a3, a4, a5} stand in sequence at the
top of the leading column, with the consequence that manifestly aaa5 = A5aaa0.

To gain additional insight, we look to this 8 × 8 truncated version of A
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of which the eigenvalues are obviously {1, 0, 0, 0, 0, 0, 0, 0}. From the values
(see page 1) of {a0, a1, a2, a3, a4, a5, a6, a7} we construct a column vector ãaa and
are informed by Mathematica that vectors proportional to ãaa are eigenvectors
associated with the eigenvalue λ = 1:

Ããaa = ãaa

(NOTE: Mathematica, when asked for the leading eigenvector, produces ãaa/a7.)

Asymptotics. We have a0 = 1 and are satisfied by low-order numerical evidence
that the an decrease monotonically, as also does their rate of descent:

an > an+1 and an−1 − an > an − an+1

Noting that one has an < 0.4 for n ! 9, that the rate of descent is by that point
already pretty slow (a9 − a10 = 0.003045), and that one appears to have

an > 1/e = 0.367879 < 0.4 : all n
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Chakerian conjectured that

lim
n→∞

an = 1/e

Equivalently,
lim

n→∞
log an = −1

which is to say: we expect log an to descend monotonically from 0 to −1, very
like functions of the form

S(x ; α, p) ≡ e−αxp

− 1

To achieve coincidence at log a100 = −0.99054 we set

α = α(p) = − log(1 + log a100)
100p

=
4.66068

100p

to obtain a function

S(x; p) = exp
[
− 4.66068

( x

100

)p ]
− 1

that gives S(100; p) = log a100 for all p. To achieve coincidence also at
log a200 = −0.995155 we set

p =
log

[
− log(1 + log a200)

]
− log 4.66068

log 2
= 0.193543

We on this basis expect the numbers log an to be well approximated by the
function

S(x) = exp
[
− 4.66068

( x

100

)0.193543 ]
− 1 : x = 0, 1, 2, 3, . . .

When with Mathematica’s assistance we (i) ListPlot the numbers

log a0, log a1, log a2, . . . , log a200

(ii) Plot the function S(x) : 0 " x " 200, and (iii) superimpose the two
graphs, we find that initially S(n) underestimates log an by an amount that
falls to less than 1% at n = 20 and has fallen to 0.001% at n = 99. At n = 101
the error switches signs and rises to 0.006% at n = 150, then falls again to
0.0001% at n = 199. It switches signs again at n = 201. The available evidence
suggests that a formula of the type S(n) ∼ log an becomes ever more precise
as n becomes larger; i.e., that Chakerian’s conjecture is correct. If one had
at hand an analytical (rather than a recursive) description of log an one would
expect to be able to assemble improved analogs of 4.66068 and 0.193543 from
mathematical constants. But the analytical description of log an appears to
require the importation of some new ideas.


