RAY MAYER'S SOLUTION OF STEIN'S PROBLEM

Nicholas Wheeler April 2015

Introduction. On 7 March 2015, Peter Renz relayed to me a problem posed by his friend, Sherman Stein, a mathematician retired from the UC/Davis faculty. Let

$$
F(x)=\frac{1}{e} \cdot(1+x)^{1 / x}
$$

Stein asks for the expansion of $F(x)$ about $x=0$. Mathematica supplies

$$
F(x)=1-\frac{1}{2} x+\frac{11}{24} x^{2}-\frac{7}{16} x^{3}+\frac{2447}{5760} x^{4}-\frac{959}{2304} x^{5}+\frac{238043}{580608} x^{6}-\frac{67223}{165888} x^{7}+\cdots
$$

where the leading term provides a statement of the familiar result

$$
\lim _{z \rightarrow \infty}\left(1+\frac{1}{z}\right)^{z}=e
$$

Writing

$$
F(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} a_{n}(-x)^{n}
$$

Stein asks for constructions of the coefficients a_{n}. I brought Stein's problem to the attention of Ray Mayer, from whom I now quote.

Mayer's solution. Write

$$
F \begin{aligned}
F(x)=e^{f(x)} \text { where } \quad f(x) & =\log F(x) \\
& =\frac{1}{x} \log (1+x)-1 \\
& =-\frac{1}{2} x+\frac{1}{3} x^{2}-\frac{1}{4} x^{3}+\frac{1}{5} x^{4}-\frac{1}{6} x^{5}+\cdots \\
& \equiv \sum_{n=0}^{\infty} c_{n}(-x)^{n}
\end{aligned}
$$

with $c_{0}=0, c_{n}=\frac{1}{n+1}(n=1,2,3, \ldots)$. Application of $x \frac{d}{d x}$ to $F=e^{f}$ gives

$$
x F^{\prime}=F \cdot x f^{\prime}
$$

or

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-)^{n} a_{n} n x^{n}=\sum_{j=0}^{\infty}(-)^{j} a_{j} x^{j} \cdot \sum_{k=0}^{\infty}(-)^{k} c_{k} k x^{k} & =\sum_{j, k=0}^{\infty}(-)^{j+k} a_{j} c_{k} k x^{j+k} \\
& =\sum_{n=0}^{\infty}(-)^{n} \sum_{j=0}^{n-1}(n-j) a_{j} c_{n-j} x^{n}
\end{aligned}
$$

where the reduced upper limit on the second summation arises from $c_{0}=0$. Equating the coefficients of x^{n} on left and right gives the recursion relation

$$
\begin{align*}
a_{n} & =\frac{1}{n} \sum_{j=0}^{n-1}(n-j) c_{n-j} a_{j} \\
& =\frac{1}{n} \sum_{j=0}^{n-1} \frac{n-j}{n-j+1} a_{j} \tag{1}\\
& =\frac{1}{n}\left\{\frac{n}{n+1} a_{0}+\frac{n-1}{n} a_{1}+\frac{n-2}{n-1} a_{2}+\cdots+\frac{2}{3} a_{n-2}+\frac{1}{2} a_{n-1}\right\}
\end{align*}
$$

Mayer's construction (1) agrees precisely with the recursion relation that was promptly obtained (almost certainly by the same argument) by Don Chakerian (Stein's colleague, also retired from the mathematics faculty at UC/Davis).

Some ramifications. In (1) a_{n} is seen to depend linearly on $a_{0}, a_{1}, \ldots, a_{n-1}$, which places at our disposal the resources of linear algebra. Let

$$
\mathbb{A}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{1} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{2} \frac{2}{3} & \frac{1}{2} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{3} \frac{3}{4} & \frac{1}{3} \frac{2}{3} & \frac{1}{3} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{4} \frac{4}{5} & \frac{1}{4} \frac{3}{4} & \frac{1}{4} \frac{2}{3} & \frac{1}{4} \frac{1}{2} & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{5} \frac{5}{6} & \frac{1}{5} \frac{4}{5} & \frac{1}{5} \frac{3}{4} & \frac{1}{5} \frac{2}{3} & \frac{1}{5} \frac{1}{2} & 0 & 0 & 0 & \cdots \\
\frac{1}{6} \frac{6}{7} & \frac{1}{6} \frac{5}{6} & \frac{1}{6} \frac{4}{5} & \frac{1}{6} \frac{3}{4} & \frac{1}{6} \frac{2}{3} & \frac{1}{6} \frac{1}{2} & 0 & 0 & \cdots \\
\frac{1}{7} \frac{7}{8} & \frac{1}{7} \frac{6}{7} & \frac{1}{7} \frac{5}{6} & \frac{1}{7} \frac{4}{5} & \frac{1}{7} \frac{3}{4} & \frac{1}{7} \frac{2}{3} & \frac{1}{7} \frac{1}{2} & 0 & \cdots \\
\vdots & \vdots &
\end{array}\right)
$$

and

$$
\boldsymbol{a}_{0}=\left(\begin{array}{c}
1 \\
* \\
* \\
* \\
\vdots
\end{array}\right)
$$

Then

$$
\mathbb{A} \boldsymbol{a}_{0}=\left(\begin{array}{c}
1 \\
a_{1} \\
* \\
* \\
\vdots
\end{array}\right) \equiv \boldsymbol{a}_{1}, \mathbb{A} \boldsymbol{a}_{1}=\mathbb{A}^{2} \boldsymbol{a}_{0}=\left(\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
* \\
* \\
\vdots
\end{array}\right) \equiv \boldsymbol{a}_{2}, \ldots, \mathbb{A}^{n} \boldsymbol{a}_{0}=\left(\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n} \\
* \\
* \\
\vdots
\end{array}\right) \equiv \boldsymbol{a}_{n}
$$

where the values of the $*$-terms are irrelevant. To see more clearly how this comes about, we look to the case \mathbb{A}^{5} where (according to Mathematica) we have

$$
\mathbb{A}^{5}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{11}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{7}{16} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{2447}{5760} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{959}{2304} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{148769}{362880} & \frac{1}{23040} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\frac{588073}{1451520} & \frac{1}{6048} & \frac{1}{80640} & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots &
\end{array}\right)
$$

and notice that the coefficients $\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ stand in sequence at the top of the leading column, with the consequence that manifestly $\boldsymbol{a}_{5}=\mathbb{A}^{5} \boldsymbol{a}_{0}$.

To gain additional insight, we look to this 8×8 truncated version of \mathbb{A}

$$
\tilde{\mathbb{A}}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{1} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} \frac{2}{3} & \frac{1}{2} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} \frac{3}{4} & \frac{1}{3} \frac{2}{3} & \frac{1}{3} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} \frac{4}{5} & \frac{1}{4} \frac{3}{4} & \frac{1}{4} \frac{2}{3} & \frac{1}{4} \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{5} \frac{5}{6} & \frac{1}{5} \frac{4}{5} & \frac{1}{5} \frac{3}{4} & \frac{1}{5} \frac{2}{3} & \frac{1}{5} \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{6} \frac{6}{7} & \frac{1}{6} \frac{5}{6} & \frac{1}{6} \frac{4}{5} & \frac{1}{6} \frac{3}{4} & \frac{1}{6} \frac{2}{3} & \frac{1}{6} \frac{1}{2} & 0 & 0 \\
\frac{1}{7} \frac{7}{8} & \frac{1}{7} \frac{6}{7} & \frac{1}{7} \frac{5}{6} & \frac{1}{7} \frac{4}{5} & \frac{1}{7} \frac{3}{4} & \frac{1}{7} \frac{2}{3} & \frac{1}{7} \frac{1}{2} & 0
\end{array}\right)
$$

of which the eigenvalues are obviously $\{1,0,0,0,0,0,0,0\}$. From the values (see page 1) of $\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$ we construct a column vector $\tilde{\boldsymbol{a}}$ and are informed by Mathematica that vectors proportional to $\tilde{\boldsymbol{a}}$ are eigenvectors associated with the eigenvalue $\lambda=1$:

$$
\tilde{\mathbb{A}} \tilde{\boldsymbol{a}}=\tilde{\boldsymbol{a}}
$$

(NOTE: Mathematica, when asked for the leading eigenvector, produces $\tilde{\boldsymbol{a}} / a_{7}$.)
Asymptotics. We have $a_{0}=1$ and are satisfied by low-order numerical evidence that the a_{n} decrease monotonically, as also does their rate of descent:

$$
a_{n}>a_{n+1} \quad \text { and } \quad a_{n-1}-a_{n}>a_{n}-a_{n+1}
$$

Noting that one has $a_{n}<0.4$ for $n \geqslant 9$, that the rate of descent is by that point already pretty slow $\left(a_{9}-a_{10}=0.003045\right)$, and that one appears to have

$$
a_{n}>1 / e=0.367879<0.4 \quad: \quad \text { all } n
$$

Chakerian conjectured that

$$
\lim _{n \rightarrow \infty} a_{n}=1 / e
$$

Equivalently,

$$
\lim _{n \rightarrow \infty} \log a_{n}=-1
$$

which is to say: we expect $\log a_{n}$ to descend monotonically from 0 to -1 , very like functions of the form

$$
S(x ; \alpha, p) \equiv e^{-\alpha x^{p}}-1
$$

To achieve coincidence at $\log a_{100}=-0.99054$ we set

$$
\alpha=\alpha(p)=-\frac{\log \left(1+\log a_{100}\right)}{100^{p}}=\frac{4.66068}{100^{p}}
$$

to obtain a function

$$
S(x ; p)=\exp \left[-4.66068\left(\frac{x}{100}\right)^{p}\right]-1
$$

that gives $S(100 ; p)=\log a_{100}$ for all p. To achieve coincidence also at $\log a_{200}=-0.995155$ we set

$$
p=\frac{\log \left[-\log \left(1+\log a_{200}\right)\right]-\log 4.66068}{\log 2}=0.193543
$$

We on this basis expect the numbers $\log a_{n}$ to be well approximated by the function

$$
S(x)=\exp \left[-4.66068\left(\frac{x}{100}\right)^{0.193543}\right]-1 \quad: \quad x=0,1,2,3, \ldots
$$

When with Mathematica's assistance we (i) ListPlot the numbers

$$
\log a_{0}, \log a_{1}, \log a_{2}, \ldots, \log a_{200}
$$

(ii) Plot the function $S(x): 0 \leqslant x \leqslant 200$, and (iii) superimpose the two graphs, we find that initially $S(n)$ underestimates $\log a_{n}$ by an amount that falls to less than 1% at $n=20$ and has fallen to 0.001% at $n=99$. At $n=101$ the error switches signs and rises to 0.006% at $n=150$, then falls again to 0.0001% at $n=199$. It switches signs again at $n=201$. The available evidence suggests that a formula of the type $S(n) \sim \log a_{n}$ becomes ever more precise as n becomes larger; i.e., that Chakerian's conjecture is correct. If one had at hand an analytical (rather than a recursive) description of $\log a_{n}$ one would expect to be able to assemble improved analogs of 4.66068 and 0.193543 from mathematical constants. But the analytical description of $\log a_{n}$ appears to require the importation of some new ideas.

